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Abstract

Habitats support life; life demands motion. This paper
uses mathematical derivations and computer simulations
to examine environmental design for life and motion in
artificial gravity. Although artificial gravity appears
increasingly natural as the radius of rotation approaches
infinity, it remains significantly unnatural at a kilometer
radius. Environmental design may help the inhabitants
to adapt by specifically responding to the unearthliness
of the gravity. I propose that appropriate architectural
forms should be derived not only from static geometric
constraints, but also from the apparent dynamic behavior
of hanging, falling, and moving objects, particularly with
regard to concepts of verticality, horizontality, and
modularity. This study reveals involute and catenary
curves. If properly incorporated into the architecture,
these curves may provide visual and tactile cues to aid
the inhabitants in comprehending and adapting to their
distorted gravity environment.

Nomenclature
Boldface indicates vector quantities; italics indicate

scalar quantities; dots above indicate derivatives with
respect to time:

XY, Z Global inertial coordinates.

X,Y,Z Local environment coordinates.

ijk Basis vectors.

Q Angular velocity of x,y,z relative to X,Y,Z.

® Angular velocity of object relative to X,Y,Z.

A Angular velocity of object relative to x,y,z.
R,R,R  Position, velocity, acceleration relative to X,Y,Z.
r,r,t Position, velocity, acceleration relative to x,y,z.
RV,A Magnitudes of R,R ,R .

r,v,a Magnitudes of r, 1, f.

H Angular momentum.

1 Moment of inertia.

M Moment.

g8’ Magnitudes of natural and artificial gravity.
t Elapsed time.

Lh Arc distance and height relative to observer.
rgry Floor radius, height radius (rp = rg - h).
re Radius to midpoint of chord.

S Linear distance.

61,6, Position angles in equations (5) and (6).

o Velocity angle in equation (6).

q Quantity defined in equation (14).

C Arbitrary constant of integration.

L._Background

Acceleration by any force other than gravity produces
a sensation of weight. Gravity acting alone produces a
sensation of weightlessness. Earth weight results
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not from the downward pull of gravity, but from the
equal and opposite upward push of the ground.

Artificial gravity requires continuous acceleration by
some agent other than “natural” gravity. Centripetal
acceleration via rotation is the usual choice because it is
self-sustaining and independent of the translational
motion of the rotating system. But when people or
objects move within a rotating reference, they may
undergo acceleration in inertial space that is neither
intended nor expected. These extra accelerations distort
the intended gravitational environment.

For an object in motion relative to a rotating envi-
ronment, the total acceleration in inertial space is:

R=- Q%r +2Qxrt + f 1)

This assumes that the angular velocity is constant, that
the environment's center of rotation is not accelerated
(except perhaps by gravity), and that tidal effects are
negligible.

The first term on the right-hand side of equation (1)

[- @? r | represents the centripetal acceleration associ-
ated with the angular velocity of the environment. The
second term [ 2 Q x 1 ] represents the Coriolis acceleration
associated with the relative velocity of the object. The
third term [t ] represents the relative acceleration of the
object. For circular motion at constant speed around the
circumference of a rotating cylinder, the formula may be
written:

rlQ ,r1lQ,rlr

j o Ixt
2
r = AXT
R =- 0%r +2Qxi - 2°r (2a)
2
- (@+2)r (2b)
In the design of rotating artificial gravity environ-

ments, only the first term in equation (2a) [—Q2 r]
represents “design gravity”. The others represent gravi-
tational distortions that result from the motion of people
and objects within the environment. The goal is to design
the environment such that the first term alone yields
some preferred acceleration while simultaneously mini-
mizing the others. Equation (2a) suggests three strate-
gies:

1. Restrict the direction of local motion to be parallel to
the axis of rotation. In this case the second and third
terms of equation (2a) vanish. Unfortunately,
eccentric motion parallel to the axis tends to desta-



bilize the rotation — causing the axis to wobble and
invalidating the initial assumption of constant angular
velocity.

Minimize the speed of local motion. This seems to
imply some type of behavior modification, whether
through individual experience and aversion to motion
sickness, deliberate training, or some type of
mechanical restraint.

Minimize the angular velocity of the environment.
For a given centripetal acceleration, minimizing the
angular velocity requires maximizing the radius, as
dictated by the first term of equation (2a). The net
effect is to minimize the other terms.

Equations (1) and (2) describe linear accelerations. Of
equal importance are angular accelerations and changes
in momentum. The moment required to produce a
change in angular momentum is:

M = Hyy,

= H

Xz + QxH

(3)

After a lifetime of learning to coordinate one’s mo-

tions on earth, the first term of equation (3) [nyz] is
expected, but the second [QxH] is not. As with the
Coriolis acceleration, the unexpected term is a cross
product of the angular velocity of the environment.

Assume that x,y,z axes are fixed in the rotating en-
vironment, with x aligned with the environment’s ro-
tation axis and z aligned along a radius. For an object
that is axially symmetric about z, the moment required to
rotate about z can be computed as follows:

o, = Q

H = IX o, + IZ o,

nyz =10,

M =Ia,+ a)Xx(IX o, +1,0,)

Lo, + IZ((DXX(DZ) (4)
The rotations about the x and z axes are said to be “cross-

coupled”.

Experiments with human subjects indicate that illu-
sions of body and visual field angular motions are ap-
proximately proportional to the cross product of the

angular velocities of the environment and the head.1,2
To the extent that the head qualifies as “axially sym-
metric”, this is described by the second term of equation

@) [, (0, xo,)1.
describe the complex physiology of the human vestibular

system,3 but it does seem approximately to describe
perception. It suggests three strategies for minimizing
these disturbances:

Of course, this doesn’t begin to

1. Restrict the orientation of local rotation to be parallel

to the rotation of the environment. In this case the
second term of equation (4) vanishes.

Minimize the angular velocity of local rotation.

Minimize the angular velocity of the environment.
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Much research has been done over the past thirty
years to determine the comfort zone for artificial gravity;

various graphs of the zone recur in the literature. > In
light of equations (1) through (4), the design of rotating
space stations has generally sought to minimize the
angular velocity by maximizing the radius (within
economic or technological bounds). Authors have
implied, and often stated outright, that “earth-normal”
gravity environments are obtainable, provided that the
radius of rotation is sufficiently large.

Artists’ renditions of rotating space stations and space
colonies often depict earth architecture transplanted into
enormous toroids, cylinders, and spheres. Except for the
unusual landscape, nothing in the architecture bespeaks
anything abnormal in the gravity environment. But these
static, still-life illustrations fail to capture the essential
dynamic nature of artificial gravity. For example: the
images often contain no clue as to the direction of
rotation.

Deviations from “earth-normalcy” become apparent
when one considers the behavior of hanging, falling, and
otherwise moving objects as observed by a person
rotating with the environment. These deviations are not
immediately apparent in the equations above. Along with
geometric constraints and the artificiality of the climate,
they call for a re-examination of basic architectural
concepts in the design of artificial gravity environments.

In order to develop humane designs, the architect
must understand the inhabitant’s perspective. It is
difficult to develop a “feel” for artificial gravity by
looking at abstract formulas. One purpose of this paper
is to develop more tangible representations. I propose
that such representations, incorporated into appropriate
architectural forms, may help the inhabitants to orient
themselves and adapt to the environment.

II. Directionali

It is convenient at this point to adopt a system for
describing the direction of motion within an artificial
gravity environment in simple everyday terms:

Up: Radially toward the center.
Down: Radially away from the center.
East: Tangentially with the rotation.
West:  Tangentially against the rotation.
North: Ninety degrees left of east.
South: Ninety degrees right of east.

With regard to “north” and “south”, inside (concave) and
outside (convex) observers may agree on the definitions,
but they will disagree on the directions of “left” and
“right”. It does not help to define the “north pole” as the
point at which the rotation appears to be counter-
clockwise — inside and outside observers will disagree on
that. My purpose in adopting these definitions is to
preserve their lexicology but to interpret them from the
perspective of the inhabitants for whom the environment
is designed.

It will also be useful to establish a coordinate system
for describing the positions of objects relative to an ob-
server, in a manner similar to common practice on earth.
I will use coordinates (I,h), where I is arc length measured
at the floor, and h is height measured radially up from
the floor (a sort of “reverse polar notation”).



11 rticality, Free-Fall, and the Invol

Hanging, Dr ing, and Throwing Ball

As iron filings reveal a magnetic field, so free-falling
objects reveal a gravitational field. The unearthliness of
artificial gravity is apparent in the deviation of free-
falling objects from “earth-normal” behavior. Figure 1
provides a play-by-play comparison of holding and
dropping a ball under conditions of natural and artificial

gravity.

Natural Gravity

Artificial Gravity

The ball’s weight is per-
ceived through resistance
to gravity.

Holding the ball prevents it
from accelerating.

Releasing the ball allows it
to accelerate.

The ball falls radially to-
ward the center of the
earth, parallel to the ap-
parent gravitational force.

The ball accelerates toward
the floor.

The ball’s weight is per-
ceived through resistance
to inertia.

Holding the ball causes it
to accelerate centripetally.

Releasing the ball allows it
to stop accelerating.

The ball falls tangentially
away from the center of
rotation, perpendicular to
the apparent gravitational
force.

The floor accelerates to-
ward the ball.

Figure 1: Comparison of Natural and Artificial Gravity

On earth, a plumb bob at rest hangs vertically, and
the cord aligns with the gravitational force. (Deflection
caused by the earth’s rotation is generally insignificant.)
If the cord is cut, the weight falls along the line of force
revealed by the cord. Verticality can be defined by either
the orientation of the hanging cord or the trajectory of
the falling weight.

In an artificial gravity environment, a plumb bob at
rest hangs radially from the center of rotation, and the
cord aligns with the centripetal force. If the cord is cut,
the force disappears. The weight does not fall radially as
one might expect, but tangentially, perpendicular to the
apparent gravitational force. Thus, if verticality in an
artificial gravity environment is defined by the
orientation of the hanging cord, then the trajectory of the
falling weight is not vertical. In fact, to an observer
within the environment, the trajectory does not even
appear straight.

From an inertial reference, the environment appears
as a rotating spool, and the trajectory as a thread pulling
tangentially away from it. But from the rotating
reference, the environment appears motionless, and the
trajectory appears as an involute curve. Figure 2 shows
the inertial view. The two silhouettes indicate the initial
and final positions of a rotating observer. Figure 3 shows
the trajectory as seen by the rotating observer. The
dotted lines indicate the ball’s inertial trajectory at each
instant. If the observer could see the inertial trajectory —
and not just the succession of instantaneous end-points
— it would appear as a thread unwinding from a spool.
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—S

tangential
length

Figure 2: Inertial View of Dropped Ball.

Figure 3: Rotating View of Dropped Ball.

If a ball is held above the floor, and a plumb bob is
used to project its initial position onto the floor, then
when the ball is dropped it will swerve and strike the
floor somewhat west of its initial position. As figure 2
shows, the deflection is completely determined by the
geometry: the radius of the floor and the initial height of
the ball. It is independent of the rotation rate and
acceleration. The initial radial position of the ball, and
the tangential distance that it travels before striking the
floor, are:

I‘h = I‘f - h
|2 2
rf - rh

If the ball was centripetally restrained, its trajectory
would be an arc subtending an angle (in radians) of:

S =

0, =
1
Th

This is the angle subtended by the centripetally-re-



strained observer. But because the ball is not restrained,
its trajectory is a straight line subtending an angle of:

92 = arctan[i]
Th

The ball’s deflection, measured along the floor, is then:
17 (6, - 6y
_ 5
Th

T, [arctan[—s]
f
Th

where positive is east and negative is west.
tion is always to the west, because:

1

(5)
The deflec-

vV x >0 : arctan(x) < X

The velocity, speed, and direction angle of the falling
ball relative to the rotating floor at the point of impact
are:

I = Qry (cos(— 92)1 + sin(— 92)j) - Qrpi
= —Qé(si + I j) (6a)
Vv = QS (6b)
I
o = - 3%
=--I_ arctan[i] (6¢)
2 Iy

The speed v is directly proportional to the tangential
distance of the fall. The direction angle o deviates from
vertical by an angle equal in magnitude to the angle
subtended by the tangential trajectory.

The elapsed time from the point of release to the
point of impact is:

S
th

t (7)

Figure 4 shows the relationship between floor radius
and trajectory deflection for a ball dropped from an
initial height of 2 meters. With a floor radius of 1000
meters, the deflection in a 2-meter drop is still more than
8 centimeters.

The behavior of the ball becomes more bizarre if it is
forcefully thrown — especially if it is thrown up and
against the rotation. Figures 5 and 6 show inertial and
rotating views of a ball thrown in artificial gravity. For
comparison, figure 7 shows the same ball thrown with the
same relative velocity on Earth. Calculation of trajectory,
relative velocity at point of impact, and elapsed time is
straightforward but tedious: 1) Add the tangential
velocity of the environment to the relative velocity of the
throw to obtain the total inertial velocity of the ball;
2) Find the intersection of the linear trajectory with the
circular floor; 3) Divide the length of the trajectory by
the velocity of the ball to obtain the elapsed time;
4) Multiply the angular velocity of the environment by
the elapsed time to obtain the rotation of the observer.
Because the ball may be given any velocity relative to the
environment, the apparent trajectory is not completely

180

102 104
103

re = 101

Measurements relative to rotating observer:
Initial Height (m): 2
Initial Velocity (m/s): 0

Floor Radius (m) Deflection at Floor (m)

10 -1.065

100 -0.272

1000 -0.085

10000 -0.027
©0 0

Figure 4: Dropping a Ball in Artificial Gravity;
Relationship of Floor Radius to Trajectory Deflection

determined by the geometry — it depends as well on the
angular velocity of the environment and the relative
velocity of the throw. Figure 8 shows a comparison of
trajectories for a ball thrown in a particular fashion in a
variety of one-g environments.

The involute curve of a falling ball provides a tangible
visual image for artificial gravity. Static images like the
figures presented here give some indication of its nature,

but it is best understood from a dynamic simulation.”

The involute curve represents the natural unforced
motion of objects in the artificial gravity environment. It
applies not only to falling balls, but also to people, and to
their limbs and vestibular organs, as they sit, stand, and
walk. Since it is significantly different than the natural
motion of objects on earth, it follows that people will

* Figures 2 through 8 are still frames from an inter-
active graphic simulation that I developed on Apollo
computers. In the simulation, the rotation of the space
station and the relative trajectory of the ball can be ob-
served in real time. A control panel allows specification
of radius, angular velocity, and centripetal acceleration of
the space station, and initial height and velocity of the
ball.
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Figure 5: Inertial View of Thrown Ball.
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Figure 6: Rotating View of Thrown Ball.

Figure 7: Earth-Normal View of Thrown Ball.
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ri =104 102 101
103

Measurements relative to rotating observer:

Initial Height (m): 1.5
Initial Velocity (m/s): 7.5
Initial Inclination from East:  94.5°
Acceleration (m/sz): 9.8

Floor Radius (m) Deflection at Floor (m)

10 4.130
100 0.781
1000 -0.454
10000 -0.832
oo -1.004

Figure 8: Throwing a Ball in Artificial Gravity;
Comparison of Trajectories for One-g Environments

move unnaturally, or will need to make an unnatural
effort to achieve natural-looking motion. In either case,
they will be aware that something is amiss.

Moving through artificial gravity can be likened to
traversing a stair: Ascending is different than de-
scending. Neither is a problem for average healthy
people provided they see the stair before stepping onto
it. Seeing the stair allows them to make appropriate
mental and motor adjustments to avoid missteps.
Traversing a stair in the dark is much more difficult. It
requires probing with toes and groping for handholds
before committing to a step. Overestimating the number
of steps can be as bad as underestimating.

In the same way, moving through artificial gravity
requires appropriate mental and motor adjustments to
avoid missteps. Moving west is different than moving
east. This is implied algebraically by equations (1) and
(2), and is clearly illustrated in figures 3, 4, 6, and 8. As
people move through the environment, they will need to
coordinate according to their direction of travel. But the
gravitational distortions associated with Coriolis
accelerations and cross-coupled rotations do not occur
until after the movement has begun. They are like
darkened stairs that must be tripped over before they are
perceived.



Incorporating the involute curve in the architecture
would provide visual and tactile cues to allow the
inhabitants to adjust their movements before tripping.
The curve indicates both the magnitude and direction of
the gravitational distortion. Because the shape of the
curve for a dropped object is independent of rotation
rate or gravity level, it could be built in to the architec-
ture just as the radius itself is built in — perhaps in the
shape of wall panels, door and window frames, or other
accents.

Limi Radius Approaches Infini

A comparison of figures 7 and 8 seems to indicate that
artificial gravity becomes increasingly natural as the
radius of rotation approaches infinity. With regard to the
relative trajectory of thrown objects, this can be shown

mathematically.

Celestial mechanics dictates that a ball thrown on
Earth will follow an elliptical orbit (albeit perturbed by
non-ideal conditions), with one focus at the center of the
earth. At the human scale, it is common practice to
simplify calculations by assuming that the distance to the
center of the earth is infinite. Mathematically, it can be
said that the eccentricity of the ellipse approaches one as

the radius of the planet approaches infinity.* In this
sense, the trajectory approaches a parabola as the radius
approaches infinity. The parabolic trajectory can be
described parametrically as:

X(t) = Xot + XO (82)

v =-Lg2 s gy v, (8b)

2

where X0, Yoo XO, yO are the initial position and

velocity of the ball relative to the observer, g is the
gravitational acceleration (9.8 m/sz), and t is the elapsed
time.

What about artificial gravity? At small radii, the
convoluted trajectory looks nothing like an ellipse or
parabola.

The coordinate systems used for this analysis are
shown in figure 9. The initial position of the ball in the
rotating rectangular coordinate system is:

Y

Qt

rf

Figure 9: Coordinate Systems Used to Analyze the
Relative Trajectory of a Ball in Artificial Gravity
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Xg = (rf - ho) sin[i—?] (9a)
Yo = - (rf - ho) cos[i—(;] (9b)

Its initial position and velocity in the inertial coordinate
system are:

onxo
Yo =0
Xp = Xg - Qg
YO =y0 +QXO

Its positions in the inertial and rotating coordinate sys-
tems at time ¢ are:

x() = Xyt + X,
Y(e) = Yyt + ¥,
x(t) = X(t)cos(—.Qt) - (o) sin(—.Qt) (10a)
y(e) = x(0)sin(- 2t) + Y(c) cos(- 2¢) (10b)

If the centripetal acceleration at the floor is g’, the an-
gular velocity is:

p j1/2

g[
Ir

The functions sin(@) and cos(e) can be written in
Maclaurin’s series form as:

3 5 7
sin(e)ze—e— 0——0—.

3! 5! 7!

2 4 6
cos(G):l—e— 0——0—.

2! 41 6!

Substituting into equations (9) and (10), canceling terms,
and taking the limit as floor radius approaches infinity
reveals:

lim X = IO (11a)
ff—)°°
lim yy = - (rf - ho) (11b)
I‘f—>°<>
lim x(t) = x5t + I (12a)
rf—)°°
lim y() = - Eg'tz v Yot - (rf - ho) (12b)
ff—)°°

*

A conic section is an ellipse, parabola, or hyperbola
depending on whether its eccentricity is less than, equal
to, or greater than one. The eccentricity is defined by the
ratio of distances from any point on the conic to a fixed
point (the focus) and a fixed line (the directrix).



Equations (8) and (12) are analogous. In artificial
gravity, as in natural gravity, the trajectory of a free-
falling ball approaches a parabola as the radius ap-
proaches infinity.

Experiments indicate that human subjects adapt better
to artificial gravity environments when the radius is large
and the angular velocity is small. (This is shown in
graphs of the comfort zone referred to earlier.) This is
usually explained in terms of head-to-foot gravity
gradients, Coriolis forces, and cross-coupled rotations, as
in equations (1) though (4). Equations (8) and (12)
provide another interpretation: the unforced relative
motion of free-falling objects is more nearly earth-like
when the radius of rotation is large.

IV. Linear Motion and th

Lineari nd M lari

Centripetal acceleration is proportional to radius.
Assuming that uniform gravity is a desirable design
feature, this implies that the radius should be constant —

that the station should have a circular cross section.

Nevertheless, a review of artificial gravity design
concepts reveals some uncertainty: Must the cross sec-
tion be a true circle, or would a many-sided polygon
suffice? In 1951, Von Braun proposed a twenty-sided

station.6 In 1962, NASA Langley Research Center and

North American Aviation studied a six-sided station.’ In
1975, a rectilinear modular construction system was

suggested for the interior of the “Stanford Torus”.8

For modular design, there are several advantages to
approximating a circle with an n-sided polygon.
Compared to curved modules, straight modules are:

e easier to pre-fabricate and furnish;

e easier to package and launch;

e more interchangeable, especially between decks at

different radii.

A polygon approaches a circle as the number of sides
approaches infinity. The problem is to find the minimum
number of sides, or the maximum ratio of chord length to
radius, to maintain a comfortable gravity environment.
This calls for an analysis of linear motion in a rotating
environment.

Lineari nd A rent S|

For linear motion at constant speed relative to a ro-
tating environment, the perceived gravity varies in both
magnitude and direction. The total acceleration is the
sum of the centripetal and Coriolis accelerations — the

first two terms of equation (1).* The centripetal ac-
celeration is always directed toward the center of rotation
— it depends only on position, and is independent of
speed. The Coriolis acceleration is always perpendicular
to the relative motion — it depends only on speed, and is
independent of position.

* If the relative speed is not constant, then the third
term of equation (1) comes into play. But its contribu-
tion to the total perceived gravitation is exactly the same
as for linear acceleration on earth.
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Figure 10 shows the centripetal, Coriolis, and total
acceleration of an observer moving west-to-east at
constant speed on a flat floor in a rotating environment.
“Up” is defined by the direction of the total acceleration.
If r is the radius to the midpoint of the chord, s is the

position on the chord from its midpoint, v is the constant
speed, and i, j are basis vectors parallel and perpendic-
ular to the chord, then the total acceleration is:

R =

- @Psi+ |2+ 20v)) (13)

Figure 11 shows how this observer might perceive his
environment. The floor he walks on appears straight, yet
its inclination seems to vary as he moves along its length
— as if rocking over the top of a hill. The arc length of
the hill is equal to the linear length of the floor. The
vertical lines under the hill represent the magnitude of
the apparent gravity. In the observer’s coordinate
system, the apparent slope of the linear path is:

vy~ o*s
dx erc+2.(2v
_ S
2v
e * g

The shape of the hill is defined by the relationship
between slope and arc length (path position):

) (r ) Z_de_y

¢ Q ) dx

ﬁbﬂ%ﬂm“

Thus, it is an inverted catenary curve of the form:

2v
q=e Ty
AN cosh[ij +C (14)
q q

where c is an arbitrary constant of integration.

Referring back to figure 10 and equation (13), the
magnitude of the acceleration is:

o]

Als) = [(Qz s)z + (.Qz c

In the coordinate system of figure 11, this becomes:

1/2
QZ _[)_{ 1+ [d_y] dx
0 dx
5 1/2
+ (.(22 r. + Z.QV)

? q cosh[ﬁJ
q

In figure 11, this acceleration is represented by vertical
lines with top endpoint at y = 0 and bottom endpoint
at:

(15)

y = - —
o2



A
.

Figure 10: Acceleration of an Observer Walking West-to- Figure 12: Acceleration of an Observer Walking East-to-
East on a Flat Floor in a Rotating Environment West on a Flat Floor in a Rotating Environment

A - o? cosh[ij
q q

A ? cosh[ij
q q
Figure 11: Slope of Floor and Strength of Gravity Figure 13: Slope of Floor and Strength of Gravity
Perceived by the Observer in Figure 10 Perceived by the Observer in Figure 12
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Figure 14: Acceleration of an Observer Climbing a Ladder
in a Rotating Environment

Q<

= —cosh + C

A - o? cosh
q

Figure 15: Slope of Ladder and Strength of Gravity
Perceived by the Observer in Figure 14

AN cosh[ij (106)
q q

Thus, the curve that represents the magnitude of the
apparent gravity is a simple translation of the curve that
represents the shape of the apparent hill.

Figures 12 and 13 show the situation for an observer
walking east-to-west at the same relative speed on the
same floor. Notice that the apparent hill is steeper than
before. For west-to-east motion, the Coriolis acceleration
was added to the normal component of the centripetal
acceleration, increasing the effective radius and reducing
the apparent slope. For east-to-west motion, the Coriolis
acceleration is reversed, reducing the effective radius and
increasing the apparent slope.

Figures 14 and 15 show an observer ascending a
vertical (radial) ladder. In this case, r. is zero. Such a

ladder should be oriented so that it faces east-west (so
that its plane is normal to the Coriolis acceleration
vector). An observer would find it most comfortable to
ascend on the west (as shown) and descend on the east.
Therefore, the ladder should be accessible from both
sides.

Figures 11, 13, and 15 suggest a scheme for studying
the comfort parameters for linear elements in an artificial
gravity environment. The use of straight cylindrical
modules may be particularly advantageous in re-
configurable tethered systems.

V. Island Architecture in the High Frontier

The literature on artificial gravity and space colo-
nization is much concerned with creating an “earth-
normal” environment. This is apparent, for example, in

the “Island” concept described by O'Neill.?  Given our
lack of experience with artificial gravity, earth-normal
environmental design is considered to be conservative
but safe.

Mlustrations of space colonies often depict essentially
“normal” earth architecture transplanted to the interiors
of enormous toroids, cylinders, and spheres. Inspired by
the genre of science fiction and fantasy, the architecture
is sometimes vaguely “updated” with assorted curvilinear
forms. But these forms seem arbitrary: they are not
derived from the ambient environment, nor do they
contribute anything to people’s adaptation to it.

The study of relative motion indicates that, even
though artificial gravity may be earth-force, it will not be
earth-normal. Abnormal motion will be noticeable, even
if it is not debilitating. The “conservative” approach of
transplanting earth architecture into such an environ-
ment may actually hinder people’s adaptation. It would
be presumptuous to propose specific architectural
solutions at this stage. The immediate task is to let go of
the “earth-normal” hang-up. Once the fallacy of earth-
normalcy is abandoned, environmental design for
artificial gravity can begin in earnest. The architecture
should be as weird as the gravity it’s designed for.

At small radii, artificial gravity is as different from
natural gravity as weightlessness, and deserves the same
attention to detail. Proper environmental design can
have a positive impact on crew comfort by reducing the
need for off-axis motion and by providing visual cues for
orientation to the distorted gravity environment.



At the other extreme, O’Neill’s descriptions of space
colonies such as “Island Three” (four miles in diameter)
invite much speculation:

e In an environment in which air pressure is due

primarily to containment rather than weight, would
the temperature, pressure, and humidity gradients be
conducive to cloud formation? Would it rain? Or fog?
Or neither?

Considering the deflection of free-falling objects in
artificial gravity, would a gentle sprinkle become a
driving easterly gale by the time it reached the
ground?

What fate would befall a human-powered flyer who
strayed too far from the zero-gravity axis?

The possibilities for fountain design are truly out of
this world!
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